پیش بینی ضریب انتشار طولی در رودخانه های طبیعی با مدل توسعه یافته شبکه عصبی
Authors
abstract
هدف اصلی این مقاله پیش بینی ضریب انتشار طولی در رودخانه های طبیعی با استفاده از مدل توسعه داده شده شبکه عصبی مصنوعی بر مبنای توابع آموزش شبه-نیوتنی بود. به این منظور از اطلاعات هیدرولیکی و هندسه جریان استفاده گردید. مجموع کل اطلاعات مورد استفاده در این تحقیق، 100 سری داده بود که به سه دسته آموزش، دسته نظارت بر آموزش و دسته آزمایش تقسیم شد. در این تحقیق، ابتدا با دیدی انتقادی به مرور برخی از مهم ترین تحقیقات انجام گرفته در این زمینه پرداخته شد که نتیجه آن نمایان ساختن اشکالات موجود در برخی از این مطالعات بود. در گام بعدی به منظور ارائه مدلی که قادر به مدل سازی ضریب انتشار طولی در رودخانه های طبیعی باشد، رویکردی جدید از شبکه عصبی بر مبنای توابع آموزش شبه-نیوتنی که کمتر مورد توجه محققان بوده، معرفی شد. در نهایت نیز با بررسی نقش این دسته از توابع آموزش بر عملکرد شبکه، بهترین ساختار شبکه برای این منظور پیشنهاد گردید. نتایج به دست آمده از این تحقیق بیانگر دقت قابل قبول مدل پیشنهادی بود به طوری که مقادیر ضریب تعیین و میانگین قدرمطلق خطا برای مرحله آزمایش به ترتیب معادل 0/85 و 53 بود.
similar resources
پیشبینی ضریب انتشار طولی در رودخانههای طبیعی با مدل توسعه یافته شبکه عصبی
هدف اصلی این مقاله پیشبینی ضریب انتشار طولی در رودخانههای طبیعی با استفاده از مدل توسعه داده شده شبکه عصبی مصنوعی بر مبنای توابع آموزش شبه-نیوتنی بود. به این منظور از اطلاعات هیدرولیکی و هندسه جریان استفاده گردید. مجموع کل اطلاعات مورد استفاده در این تحقیق، 100 سری داده بود که به سه دسته آموزش، دسته نظارت بر آموزش و دسته آزمایش تقسیم شد. در این تحقیق، ابتدا با دیدی انتقادی به مرور برخی از مهم...
full textتحلیل دقت و عدم قطعیت مدل های هوشمند در پیش بینی ضریب انتشار طولی رودخانه ها
پیش بینی دقیق ضریب انتشار طولی در رودخانه های طبیعی تا حد بسیار زیادی در تعیین توزیع غلظت آلاینده ها در چنین محیط هایی مؤثر است. عدم قطعیت موجود در نتایج به دست آمده از مدل های پیش بینی می تواند در تصمیم گیری های مناسب برای برخورد با مواد آلاینده در رودخانه ها تأثیر منفی داشته باشد. به همین دلیل، تحلیل و تعیین عدم قطعیت مدل های مورد استفاده برای پیش بینی این پارامتر بسیار مفید است. در این تحقیق...
full textتحلیل عدم قطعیت مدل های شبکه عصبی و نروفازی در پیش بینی جریان رودخانه
پیش بینی آورد رودخانه در مدیریت منابع آب از اهمیت فراوانی برخوردار است، اما به دلیل عدم قطعیت بالا در عواملی که فرآیند بارش- رواناب را سبب میگردند، همواره با مشکلاتی همراه بوده است. یکی از روشهایی که میتواند این مشکل را تا حدی کاهش دهد، تحلیل عدم قطعیت پیشبینیهای انجام شده میباشد. این تحلیلها در مدلهای آماری سابقه طولانی دارند، ولی برای مدلهای شبکه عصبی و نروفازی کمتر مورد استفاده قرا...
full textپیش بینی بارش ماهانه در منطقه ایران با استفاده از ترکیب شبکه های عصبی مصنوعی و فیلتر کالمن توسعه یافته
بارش باران یکی از مهمترین پدیدههای جوّی است که بر زندگی بشر اثر میگذارد. پیشبینی بارش باران برای اهداف مختلفی مانند برنامهریزی فعالیتهای کشاورزی، پیش<st...
full textمدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
full textMy Resources
Save resource for easier access later
Journal title:
فصلنامه علمی- پژوهشی آب و فاضلابPublisher: مهندسین مشاور طرح و تحقیقات آب و فاضلاب
ISSN 1024-5936
volume 21
issue 4 2010
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023